

Space Cryocoolers

E. Tward

June 20, 2003

Overview

Maturity

- Northrop Grumman Space Technology (TRW) has been developing Cryocooler technology since the late 1980s
- Northrop Grumman Space Technology has delivered 20 flight qualified cooler systems
 - ñ Eight coolers currently operating in orbit (2 longer than 5 years to date)
 - ñ No flight failures
 - ñ 30 additional flight type coolers and spares manufactured and delivered
- First of next generation cooler systems has been flight qualified (HEC)

Development

- State of art is being pushed to fill in large holes
 - ñ Higher efficiencies
 - ñ Smaller coolers for much smaller payloads
 - Higher capacities for larger systems
 - **n** Lower temperatures for VLWIR

Heritage

Northrop Grumman Space Technology has produced more flight coolers than the rest of US industry combined

Cooler Requirements

Most cooling requirements could be met with variants of 4 basic scaled cryocoolers

Northrop Grumman Space Technology Cryocooler Flight History/Future

No Northrop Grumman Space Technology cooler has ever failed in orbit

Flight Project	Cooler	Electronics	'98	'99	'00	'01	02	'03	'04	'05	'06
CX (2)	Mini-Pulse	Airs Class (2)									
HTSSE	Stirling	Custom									
MTI	Airs Class	Airs Class									
Hyperion	Mini-Pulse	Hyperion Class									
SABER	Mini-Pulse	Demo									
STSS (4)	Mini-Pulse	Airs Class (4)									
AIRS (2)	Airs Class	Airs Class (2)									
TES (2)	Airs Class	Airs Class (2)									
SOFIS	HEC	Hyperion Class									
JAMI (2)	HEC	Hyperion Class (2)									
OPAL (2)	HEC	Hyperion Class (4)									
Hybrid 2 Stage (2)	HEC	Next Gen									

Cryocooler Road Map

Only US Long-Life Flexure Coolers in Orbit

Mini Stirling (1 in orbit)

AIRS Cooler (2 in orbit)

HEC Cooler

High Capacity Staged

Only 14 Kg 4x capacity of HEC

> 10K Cooler

Mini pulse tube (4 in orbit)

6K Cooler
ACTDP

Electronics

Next Generation

2 Temp Staged Coolers
Based on HEC

Mini Cooler

1.5 Kg cooler 2/3 mass of mini pulse tube

4x capacity of MPT

Scaled Balanced Compressors

Compressor Modules

Space Technology

50 Lbs Static Load on Coaxial Pulse Tube Cold Head

Cold head is very robust

MORTHROP GRUMMAN

Flight Cooler Components

- HEC Cooler and electronics shown
- Components Electronics, Compressor, Cold head, Harness

Cold Heads

 Multiple cold heads matched to compressor and load temperature

Standard Electronics

Control Slice

> Power Amp

Power Supply

Standard Compressors
A range of sizes

Advantageous Cooler System Features

	Impact on Payload and Spacecraft					
Feature	Cost	Sched	Mass	Risk		
Mechanical Cooler						
Integral pulse tube cold head configuration					Reduced integration complexity. Reduced payload mechanical structure. Reduced payload thermal straps and heat pipes	
Integrated heat spreader					Heat spreader integrated into centerplate reduces payload requirement	
Pulse tube cold heads					Very robust against launch loads Do not require snubbers	
Electronics						
Ripple filter (CE-01 compliant)					Incorporated active filter removes spacecraft need to develop expensive heavy filter	
Fully reconfigurable					Reduces software schedule risk	
software in orbit					Reduces operational risk since software upload can cure some hardware faults (e.g. Hyperion)	
Autonomous vibration control system					Reduces cooler and payload I&T costs and schedule. Cooler autonomously learns and updates. Does not require measurement and pre-loading of transfer coefficients.	
					Reduces jitter risk on orbit if mechanical structure changes during launch	
Engineering diagnostic data					Extensive downloadable diagnostic data including drive current, voltage and accelerometer real time waveforms allows rapid recovery from in orbit failures.	

Reliability Performance – Pulse Tube cooler

Single-String System	10 Year Reliability
Cryocooler	0.9223
Cryocooler Control Electronics	0.9355
Mechanical Assembly	0.9858

High Efficiency Cryocooler Performance

- Each cooler provides efficient cooling over a very wide temperature range
 - ñ Flight coolers have been delivered for cooling applications at 41K, 60K, 65K, 67K, 95K

HEC Electronics Efficiency

Very efficient over the complete performance range of delivered power

Active Ripple Control Provides > 20dB Attenuation

Active ripple control relieves need for additional ~ 3Kg power bus filter

Staged Coolers – Custom Add on to HEC

- Two temperature cooling can result in reduced payload power, mass, less hardware and greater system reliability
 - ñ Typical application is in cooling of focal planes at lower temperatures and simultaneously cooling optics, filters at higher temperatures

Miniature IR&D Cooler

Applications
•Payloads to <40K

- Miniature cooler has very large capacity/unit mass
 - ñ 4x capacity of current mini pulse tube coolers
 - ñ æof the mass

High Capacity Staged Cooler 35K/85K

- High capacity coolers are required for large focal planes at low temperature when used with large optics
 - ñ Cooling payload systems to 35K
 - ñ E.g.
 - (2W@ 35K and 16.7W @85K)

or

- .7W @35K and 7W @85K

High Capacity Compressor

HCC Staged Cooler

HCC Status EM 7/03 (35K/85K Cooler)

ACTDP Cooler - NASA

NORTHBOP GRAPMAN

Space Estimology

Provides cooling at remote locations

Cryocooler Summary

- Pulse Tube cryocoolers are the gold standard for space cooling because of efficiency, producibility and heritage in space
- Expansion of capabilities to lower temperatures, higher efficiencies, scaled smaller and larger capacities and to multiple cooling stages will enable many missions